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Part 0: Overview



Axiomatizing CFT

• A (two-dimensional, chiral) conformal field theory comes with a
lot of data: correlation functions, fusion products, braiding,
characters, tensor categories, central charge, and much more.

• The goal is to provide axioms for a subset of the data in such a
way that:

1) it is possible to recover the remaining data
2) expected behavior can be rigorously proven
3) all physically relevant models satisfy the axioms

• Even in low dimensions this is very difficult, but it also has a
knack for producing interesting and broadly applicable
mathematics.



Conformal nets vs VOAs

• Conformal nets and vertex operator algebras are two approaches
to axiomatizing 2d chiral CFT.

• They axiomatize different subsets of the data, using different
mathematical tools.

• When we compare the two descriptions we can physical ideas to
relate different areas of mathematics. E.g.

Finite Jones index

Conjugate sectors

Invertible fusion matrix

CNs

VOAs

• This brings us closer to a complete mathematical picture of
CFT, and leads to new connections e.g. between subfactors,
VOAs, and tensor categories.



The plan

• A quick tour of conformal nets and vertex operator algebras for
non-experts

• A discussion of ongoing programs to go back and forth between
the two

• Recent achievements and open problems

• Next talk: Connections with Segal (functorial) CFT



Part 1: Definitions/vacuum sector



Conformal nets

A conformal net A is

• a Hilbert space H0 and a unit vector Ω ∈ H0

• for every interval I ⊂ S1, a von Neumann algebra A(I ) ⊂ B(H0)

◦ a projective unitary representation U of Diff+(S1) on H0

such that

• if I ⊂ J then A(I ) ⊂ A(J)

• if I ∩ J = ∅ then A(I ) and A(J) commute

◦ U(γ)A(I )U(γ)∗ = A(γ(I ))

◦ if supp(γ) ⊂ I then U(γ) ∈ A(I )

◦ if γ extends holomorphically to the disk D, then U(γ)Ω = Ω

◦ Ω is cyclic for the A(I )

Versions of this definition first appear in
Fredenhagen-Rehren-Schroer ’92 and Gabbiani-Fröhlich ’93,
following Haag-Kastler ’64.



Examples of conformal nets: WZW models

• G - compact simple simply connected Lie group

• LG - the loop group C∞(S1,G )

• πk,0 - the level k vacuum representation of L̃G for k ∈ Z+

WZW models are given by:

AG ,k(I ) = vNA
(
{πk,0(f ) : supp(f ) ⊆ I}

)



Digression: unitarity

• Conformal nets axiomatize unitary chiral conformal field theories.

• In these examples the space of states has an inner product
compatible with the other data (i.e. the algebras A(I ) are closed
under taking adjoints)

• Not all chiral CFTs are unitary. We are looking at a proper
subset of theories by comparing conformal nets to unitary VOAs.



Unitary vertex operator algebras

A unitary vertex operator algebra is given by

• a finite-dimensionally graded inner product space
V =

⊕∞
n=0 V (n) and a unit vector Ω ∈ V (0)

• for every a ∈ V a formal distribution Y (a, z) ∈ End(V )[[z±1]]

◦ a conformal vector ν ∈ V

such that

• (z − w)N [Y (a, z),Y (b,w)] = 0 for N sufficiently large

◦ Y (a, z)Ω|z=0 = a and Y (Ω, z) = idV

◦ If Y (ν, z) =
∑

n∈Z Lnz
−n−2, then Ln give a representation of the

Virasoro algebra.

◦ The grading on V is given by L0 and [L−1,Y (a, z)] = d
dzY (a, z)

◦ (z − w)N [Y (a, z−1)∗,Y (b,w)] = 0 for N sufficiently large

This version of the definition of unitarity first appeared in
Carpi-Kawahigashi-Longo-Weiner ’18.



Example of unitary VOAs: WZW models

• g - compact simple Lie algebra

• Lg0 - the polynomial loop algebra g[z±1] ⊂ C∞(S1, g)

• πk,0 - the level k ∈ Z+ vacuum representation of L̃g0
C

• For X ∈ gC set Xn = πk,0(Xzn).

The vertex algebra Vg,k is generated by fields

Y (X−1Ω, z) =
∑
n∈Z

Xnz
−n−1



Comparing WZW models

• Representation of C∞(S1,G ) on H

• Representation g[z±1] ⊂ C∞(S1, g) on V ⊂ H

• Goodman-Wallach ’84: the representation of g[z±1] extends to
C∞(S1, g) and then exponentiates to C∞(S1,G ).

• In vertex algebra terms, Xf (z) acts by the smeared field

Y (X−1Ω, f ) :=
1

2πi

∫
S1

Y (X−1Ω, z)f (z) dz =
∑
n∈Z

f̂ (n)Xn.

• So Ag,k(I ) is generated by {eY (X−1Ω,f ) : supp(f ) ⊂ I ,X ∈ g}.



Intermediate step: Wightman CFT

• The fields Y (a, z) are a priori formal distributions(
f ∈ C[z±1]

)
7→
(
Y (a, f ) : V → V

)
where Y (a, f ) = 1

2πi

∫
S1 Y (a, z)f (z) dz

z1−da
=
∑

n∈Z f̂ (n)an

• These can be upgraded to operator-valued distributions(
f ∈ C∞(S1)

)
7→
(
Y (a, f ) : D → HV

)
where HV is the Hilbert space completion and D is a dense
domain invariant under all Y (b, f ) (Raymond-Tanimoto-T, also
partial result in Carpi-Kawahigashi-Longo-Weiner ’18)

• Y (a, f ) and Y (b, g) commute when f and g have disjoint
support.

• In fact, unitary VOAs are equivalent to unitary Wightman CFTs
satisfying a uniform order condition.



From VOAs to conformal nets

• Starting from a unitary VOA V , set

AV (I ) = vNA
(
{Y (a, f ) : a ∈ V , supp(f ) ⊂ I}

)
• The operators Y (a, f ) are unbounded. The algebras are

generated using bounded measurable functions. E.g. if Y (a, f )
is self-adjoint, vNA(Y (a, f )) contains {e itY (a,f )}.
• A central technical challenge in algebraic QFT:

Problem

Show that AV (I ) and AV (J) commute when I and J are disjoint

• If so, AV is a conformal net (broad framework in CKLW ’18, in
the presence of polynomial energy bounds)

• Direct solution for WZW and Virasoro examples (via
Glimm-Jaffe-Nelson and linear energy bounds) as well as e.g.
W3 (Carpi-Tanimoto-Weiner), tools can extend this to many
more examples (CKLW, Gui)



From conformal nets to VOAs

• In the reverse direction, two methods of characterizing fields
from conformal nets: one in CKLW (à la Fredenhagen-Jörß), one
in Raymond-Tanimoto-T, but neither guarantees “enough” fields

• Henriques described our joint work in progress which constructs
a unitary VOA from an arbitrary conformal net, and
characterizes which VOAs correspond to nets.

• Conjecture: every unitary VOA generates a conformal net.

• A conformal nets provide added analytic control over its VOA,
and the VOA provides access to CFT data that is not easily seen
in the conformal net setting.



Part 2: Representations and tensor
products



Representations of conformal nets

A representation of a conformal net is given by:

• a family of representations λI : A(I )→ B(Hλ), compatible with
inclusion of intervals

From this we extract a subfactor:

λI ′
(
A(I ′)

)︸ ︷︷ ︸
N

⊆ λI
(
A(I )

)′︸ ︷︷ ︸
M

which has a Jones-Kosaki index [M : N] =: index(λ).

Theorem (Jones ’83)

The set of possible subfactor indices is

{4 cos2(π/n) : n = 3, 4, . . .} ∪ [4,∞].

Question

Which subfactors arise in this manner?



Rational conformal nets

Definition

A conformal net is called rational if it has finitely many iso classes
of irreducible representations, each with finite index.

An apparently stricter definition first appeared in Kawahigashi-Longo-Müger

’01, later simplified in Longo-Xu ’04 and Morinelli-Tanimoto-Weiner ’18.

Theorem (KLM ’01 [+ LX ’04 + MTW ’18])

If A is a rational conformal net, then Rep(A) is naturally a unitary
modular tensor category.

The rigidity of Rep(A) corresponds to finiteness of the index.



Representations of vertex operator algebras

A representation of a VOA is given by:

• a state-field map YM : V → End(M)[[z±1]]

Definition

A VOA is called rational if it has finitely many iso classes of
representations and representations satisfy an appropriate complete
reducibility property.

• The work of Huang/Huang-Lepowsky shows that under mild
hypotheses the category Rep(V ) is a modular tensor category.

• Rigidity is not built into the definition of rationality.



Comparing modules

• If A comes from a VOA V , and M is a V -module, then the
corresponding representation πM of A is characterized by

πMI (Y (a, f )) = YM(a, f )

when supp(f ) ⊂ I (up to closure/extension).

• Conjecture that such a πM exists (at least if M is “not too big”)

• All conformal net modules should be of the form πM , similar to
Henriques’ talk.



Comparing intertwiners

• If Y ∈
( M
K N

)
is an intertwining operator and supp(f ) ⊂ I , then

Y(a, f ) should intertwine πMI ′ and πNI ′ .

• This is a fundamental link between the two tensor product
theories.

• There are again deep technical challenges because the operator
Y(a, f ) is unbounded. These have been addressed in special
cases in work by Gui and T.



Comparison: tensor categories

For conformal nets:

• The tensor product (“Connes’ fusion”) of two representations is
given by an explicit construction, depending on a choice of
interval I

• The construction is manifestly unitary, producing a unitary
tensor category

For unitary VOAs:

• The tensor product of VOA modules is given by a universal
property, depending on a choice of point z ∈ C.

• Construction of a tensor category relies on a particular
construction of the tensor product via Huang-Lepowsky theory.

• Have to select an appropriate category of modules.

• The tensor product module does not come with an inner
product.

• Problem: describe the VOA module which corresponds to
Connes’ fusion.



Part 3: Applications (and advertising)



Application: positivity conjectures

Using the dictionary VOA ←→ CN, we translate the Connes’
fusion inner product into VOA language:

Conjecture (Positivity conjecture)

The form on M ⊗ N given by
〈a1 ⊗ b1, a2 ⊗ b2〉�,z :=

〈
Y N(Y(ã2, z

−1 − z)a1, z)b1, b2

〉
N

is positive semidefinite.

• where M and N are unitary V -modules, 0 < |z | < 1,
• Y ∈

( V
M†M

)
, where M† is the complex conjugate module,

• and a 7→ ã is a certain explicit involution.

Conjecture (Strong positivity conjecture)

There is a canonical unitary V -module structure on a dense

subspace of M ⊗ N
〈,〉� and an intertwining operator Y� such that

Y�(a, z)b agrees with the ‘identity’ M ⊗ N → M ⊗ N
〈,〉� .

For the appropriate category of modules/choice of intertwiners,
this should be a tensor product.



Application: unitarity of VOA tensor categories

• Gui has shown that when the VOA is rational and the positivity
conjecture holds, Repu(V ) has a natural unitary structure

• Can verify positivity in examples by leveraging ‘automatic
positivity’ for the corresponding conformal net, and solving
Wassermann’s transport equation:

πN(Y+
M(b, g)∗Y+

M(a, f )) = Y�(b, g)∗Y�(a, f )

where Y+
M ∈

( M
M V

)
and Y� ∈

( �
M N

)
.

• In papers of Gui (and T) this has been done for WZW models,
discrete series type ADE W -algebras, lattice models, and more



Application: rationality of conformal nets

• It is difficult to show that CN representations have finite index
(see Gabbiani-Fröhlich ’93); the corresponding property for VOA
modules is known by Huang’s general theory.

• Wassermann ’98 initiated the program of using fields to show
that CN representations have finite index with type A WZW.
Followed by Toledano Laredo ’97 in type D. Field theoretic
calculations done ‘by hand.’

• Gui ’18 used smeared intertwining operators and VOA theory to
prove rationality of type CG nets.

• Geometric methods in T’19 used to show rationality of all WZW
nets and discrete series ADE W -algebras.

• Gui ’20 showed that CN and VOA rep categories are equivalent
in all of these examples, and more.



Future directions

• General theory identifying Rep(AV ) and Rep(V )?

• Tensor product theory for very badly behaved unitary VOAs?

• Modular invariance of characters for conformal nets?

• Non-unitary analogs of conformal nets?

• Construction of Haagerup CFT?



Thank you!


