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Part 0: Overview



Axiomatizing CFT

e A (two-dimensional, chiral) conformal field theory comes with a
lot of data: correlation functions, fusion products, braiding,
characters, tensor categories, central charge, and much more.

e The goal is to provide axioms for a subset of the data in such a
way that:

1) it is possible to recover the remaining data

2) expected behavior can be rigorously proven
3) all physically relevant models satisfy the axioms

e Even in low dimensions this is very difficult, but it also has a
knack for producing interesting and broadly applicable
mathematics.



Conformal nets vs VOAs

e Conformal nets and vertex operator algebras are two approaches
to axiomatizing 2d chiral CFT.

e They axiomatize different subsets of the data, using different
mathematical tools.

e When we compare the two descriptions we can physical ideas to
relate different areas of mathematics. E.g.

Finite Jones index
NS oy
Conjugate sectors

W
VOAs Invertible fusion matrix

e This brings us closer to a complete mathematical picture of
CFT, and leads to new connections e.g. between subfactors,
VOAs, and tensor categories.



The plan

A quick tour of conformal nets and vertex operator algebras for
non-experts

e A discussion of ongoing programs to go back and forth between
the two

Recent achievements and open problems

Next talk: Connections with Segal (functorial) CFT



Part 1. Definitions/vacuum sector



Conformal nets

A conformal net A is

e a Hilbert space Hg and a unit vector Q € Hy

e for every interval / C S', a von Neumann algebra A(/) C B(Ho)
o a projective unitary representation U of Diff  (S') on Ho
such that

o if | C Jthen A(l) C A(J)

o if INJ =10 then A(/) and A(J) commute

o UMANUG) = A((1))

o if supp(y) C I then U(v) € A(I)

o if 7 extends holomorphically to the disk D, then U(y)Q2 = Q
o Qis cyclic for the A(/)

Versions of this definition first appear in
Fredenhagen-Rehren-Schroer '92 and Gabbiani-Frohlich '93,
following Haag-Kastler '64.



Examples of conformal nets: WZW models

e G - compact simple simply connected Lie group
e LG - the loop group C®(S!, G)

® Ty o - the level k vacuum representation of LG for k € 7y

WZW models are given by:

Ag k(1) = vNA ({mo(f) : supp(f) C I})



Digression: unitarity

e Conformal nets axiomatize unitary chiral conformal field theories.

e In these examples the space of states has an inner product
compatible with the other data (i.e. the algebras A(/) are closed
under taking adjoints)

e Not all chiral CFTs are unitary. We are looking at a proper
subset of theories by comparing conformal nets to unitary VOA:s.



Unitary vertex operator algebras

A unitary vertex operator algebra is given by

e a finite-dimensionally graded inner product space
V =@,2, V(n) and a unit vector Q € V(0)

e for every a € V a formal distribution Y(a,z) € End(V)[[z*}]]

o a conformal vector v € V

such that

e (z—w)V[Y(a,z), Y(b,w)] =0 for N sufficiently large

o Y(a,2)Q|;=0 = aand Y(Q,z) =idy

o If Y(v,2) =3 ,cz Lnz" "2, then L, give a representation of the
Virasoro algebra.

o The grading on V is given by Ly and [L_1, Y(a,2)] = %Y(a, z)

o (z—w)N[Y(a,z71)*, Y(b,w)] = 0 for N sufficiently large

This version of the definition of unitarity first appeared in

Carpi-Kawahigashi-Longo-Weiner '18.



Example of unitary VOAs: WZW models

e g - compact simple Lie algebra

Lg® - the polynomial loop algebra g[z*!] ¢ C>(S!,g)

Tk,0 - the level k € Z, vacuum representation of Lg0¢
For X € gc set X, = my 0(X2").

The vertex algebra V;  is generated by fields

X_1Q,z) = ZXZ"_

nezZ



Comparing WZW models

Representation of C>°(S*, G) on H

Representation g[z*1] ¢ C*°(S,g)on V C H

Goodman-Wallach '84: the representation of g[z*!] extends to
C>(S1, g) and then exponentiates to C*(S?, G).

In vertex algebra terms, Xf(z) acts by the smeared field

1 ~
Y(XaQ,f) = o 8 Y(X1Q,2)f(2) dz =Y F(n)Xn.
nez

So Ag (/) is generated by {eYX12F) - supp(f) c 1, X € g}.



Intermediate step: Wightman CFT

e The fields Y(a, z) are a priori formal distributions
(f e C[zil]) — (Y(a, V- v)

where Y(a, f) 1 = Js1 Y(a,2)f(z )Z1C£Zda = nez F(n)an

e These can be upgraded to operator-valued distributions
(f e cm(sl)) - <Y(a, f):D — HV>

where Hy, is the Hilbert space completion and D is a dense
domain invariant under all Y(b, f) (Raymond-Tanimoto-T, also
partial result in Carpi-Kawahigashi-Longo-Weiner '18)

e Y(a,f) and Y(b,g) commute when f and g have disjoint
support.

e In fact, unitary VOAs are equivalent to unitary Wightman CFTs
satisfying a uniform order condition.



From VOAs to conformal nets

e Starting from a unitary VOA V/, set
Ay (l) =vNA ({Y(a,f):a€ V,supp(f) C I})

e The operators Y(a, f) are unbounded. The algebras are
generated using bounded measurable functions. E.g. if Y(a, f)
is self-adjoint, vNA( Y (a, f)) contains {e/Y(21)},

e A central technical challenge in algebraic QFT:

Problem
Show that Ay/(1) and Ay/(J) commute when | and J are disjoint

e If so, Ay is a conformal net (broad framework in CKLW 18, in
the presence of polynomial energy bounds)

e Direct solution for WZW and Virasoro examples (via
Glimm-Jaffe-Nelson and linear energy bounds) as well as e.g.
W3 (Carpi-Tanimoto-Weiner), tools can extend this to many
more examples (CKLW, Gui)



From conformal nets to VOAs

e In the reverse direction, two methods of characterizing fields
from conformal nets: one in CKLW (a la Fredenhagen-JorB), one
in Raymond-Tanimoto-T, but neither guarantees “enough” fields

e Henriques described our joint work in progress which constructs
a unitary VOA from an arbitrary conformal net, and
characterizes which VOAs correspond to nets.

e Conjecture: every unitary VOA generates a conformal net.

e A conformal nets provide added analytic control over its VOA,
and the VOA provides access to CFT data that is not easily seen
in the conformal net setting.



Part 2: Representations and tensor
products



Representations of conformal nets

A representation of a conformal net is given by:

e a family of representations \; : A(/) — B(H,), compatible with
inclusion of intervals

From this we extract a subfactor:
A (A1) € N (A
T T/

which has a Jones-Kosaki index [M : N] =: index(\).

Theorem (Jones '83)

The set of possible subfactor indices is

{4cos®(m/n) : n=3,4,...} U[4, ).

Which subfactors arise in this manner? \




Rational conformal nets

Definition

A conformal net is called rational if it has finitely many iso classes
of irreducible representations, each with finite index.

An apparently stricter definition first appeared in Kawahigashi-Longo-Miiger
'01, later simplified in Longo-Xu '04 and Morinelli-Tanimoto-Weiner '18.

Theorem (KLM '01 [+ LX '04 + MTW '18])

If A is a rational conformal net, then Rep(.A) is naturally a unitary
modular tensor category.

The rigidity of Rep(.A) corresponds to finiteness of the index.



Representations of vertex operator algebras

A representation of a VOA is given by:
e a state-field map YV : V — End(M)[[z*}]]

Definition

A VOA is called rational if it has finitely many iso classes of
representations and representations satisfy an appropriate complete
reducibility property.

e The work of Huang/Huang-Lepowsky shows that under mild
hypotheses the category Rep(V) is a modular tensor category.

e Rigidity is not built into the definition of rationality.



Comparing modules

e If A comes from a VOA V, and M is a V-module, then the
corresponding representation 7™ of A is characterized by

(Y (a,f)) = Y"(a,f)
when supp(f) C I (up to closure/extension).

e Conjecture that such a 7™ exists (at least if M is “not too big")

M

e All conformal net modules should be of the form 7™, similar to

Henriques’ talk.



Comparing intertwiners

e IfYe (KMN) is an intertwining operator and supp(f) C /, then
V(a, f) should intertwine 7 and 7¥.

e This is a fundamental link between the two tensor product
theories.

e There are again deep technical challenges because the operator
Y(a, f) is unbounded. These have been addressed in special
cases in work by Gui and T.



Comparison: tensor categories

For conformal nets:

e The tensor product (“Connes’ fusion”) of two representations is
given by an explicit construction, depending on a choice of
interval /

e The construction is manifestly unitary, producing a unitary
tensor category

For unitary VOAs:

e The tensor product of VOA modules is given by a universal
property, depending on a choice of point z € C.

e Construction of a tensor category relies on a particular
construction of the tensor product via Huang-Lepowsky theory.

e Have to select an appropriate category of modules.

e The tensor product module does not come with an inner
product.

e Problem: describe the VOA module which corresponds to
Connes' fusion.



Part 3: Applications (and advertising)



Application: positivity conjectures

Using the dictionary VOA <— CN, we translate the Connes’
fusion inner product into VOA language:

Conjecture (Positivity conjecture)

The form on M @ N given by
(a1 ® b1, ® bo)mz := (YN( V(52,27 — 2)a1, 2) b1, ba)

is positive semidefinite.

e where M and N are unitary V-modules, 0 < |z| < 1,

e )Vc (MYM), where MT is the complex conjugate module,

e and a — 3 is a certain explicit involution.

Conjecture (Strong positivity conjecture)

There is a canonical unitary V-module structure on a dense
subspace of M ® N<’>® and an intertwining operator Vg such that
Vx(a, z)b agrees with the ‘identity’ M@ N — M & N,

For the appropriate category of modules/choice of intertwiners,
this should be a tensor product.



Application: unitarity of VOA tensor categories

e Gui has shown that when the VOA is rational and the positivity
conjecture holds, Rep“(V) has a natural unitary structure

e Can verify positivity in examples by leveraging ‘automatic
positivity’ for the corresponding conformal net, and solving
Wassermann's transport equation:

T (Vii(b. ) Viy(a. ) = Va(b. g) Va(a, f)

where y,; S (MMV) and Vg € (MDN).

e In papers of Gui (and T) this has been done for WZW models,
discrete series type ADE W-algebras, lattice models, and more



Application: rationality of conformal nets

e |t is difficult to show that CN representations have finite index
(see Gabbiani-Frohlich '93); the corresponding property for VOA
modules is known by Huang's general theory.

e Wassermann '98 initiated the program of using fields to show
that CN representations have finite index with type A WZW.
Followed by Toledano Laredo '97 in type D. Field theoretic
calculations done ‘by hand.’

e Gui '18 used smeared intertwining operators and VOA theory to
prove rationality of type CG nets.

e Geometric methods in T'19 used to show rationality of all WZW
nets and discrete series ADE W-algebras.

e Gui '20 showed that CN and VOA rep categories are equivalent
in all of these examples, and more.



Future directions

General theory identifying Rep(.Ay/) and Rep(V)?

Tensor product theory for very badly behaved unitary VOAs?

Modular invariance of characters for conformal nets?

Non-unitary analogs of conformal nets?

Construction of Haagerup CFT?



Thank you!



